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ABSTRACT

The Dynamic Undergrourd Stripping Project demonstrates
cost-cffective, rapid cleanup of localized underground
plumes, often the result of leaking underground storage
tanks. The technique combines the complementary
technologies of subsurface steam injection and electrical
resistance heating.

The engineering demonstration phase of this project was
completed on a clean, uncontaminated site with well-
characterized geology.l.2 The Clean Site is located in
Livermore, California at the U.S. Department of Energy’s
Sandia National Laboratory (SNL). The experience gained
at the Clean Site, will be applied to clean up an §,000 to
12,000 gallon gasoline spill, approximately 500 yards to the
northwest, at the Lawrence Livermore National Laboratory
(LLNL).

DYNAMIC UNDERGROUND STRIPPING

Dynamic underground stripping is an integrated
process combining the complementary technologies of
steam injection and electrical resistance heating. Steam
injected through multiple wells on the perimeter of a plume
volatilizes the contaminants in permeable zones and sweeps
them towards a central vacuum-liquid extraction well.3.4
Electrical resistance heating volatilizes contaminants in low
permeability clay zones not penetrated by the steam.5
Current passes through the ground between electrodes
installed in the perimeter wells. As the clay regions are
heated, volatile contaminants are driven into the permeable
zones, where they are removed by vacuum extraction or
subsequent steam floods.

aThis work was funded by the Office of Technology
Development of the U. S. Department of Energy. Work
performed under the auspices of the U. S. Department of
Energy by Lawrence Livermore National Laboratory
under contract number W-7405-Eng-48.
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Fielding these techniques poses technical and
operational challenges. An uncontaminated site was
selected for the engineering demonstration to solve the
engineering problems. Two test patterns were built: a
large-scale steam injection pattern was built on the scale of
the gasoline-contaminated site at LLNL, and a small-scale

pattern was used for electrical heating.6
LARGE-SCALE PATTERN WELL CONSTRUCTION

The following wells were included in the large-scale
pattern: 11 combination temperature-tomography wells, 3
geophysical monitoring wells, 2 extraction wells, 1 steam
injection well, and 3 piezometer wells. Figure 1 shows the
location of each well and its type. Figures 2 through 4 are
typical completion drawings for some of the wells in the
large-scale pattern.
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Figure 1. Clean Site wells.



STEAM INJECTION AND EXTRACTION:
OPERATIONS AND RESULTS

Steam injection operations were conducted 24 h/d
for 26 days; the steam was generated by a 200-hp Cleaver
Brooks Mobile Stearn Plant. During the steam injection
operation, 295,000 gallons of steam were injected into the
ground at an average rate of 8.5 gal/min (4200 1b/h).
Approximately 10,000 yd3 of soil were raised to the boiling
point of water. Figure 5 presents steam injection
operational statistics.

Geophysical imaging showed that steam movement
was primarily oriented towards the extraction well and
gradually expanded to a 270° arc around the injection
well.7-12 Although this result may have been influenced
by vacuum-liquid extraction during the first 10 days of
operation, a more likely cause is variable permeability in
the target gravel layer. Steam breakthrough to the
extraction well, which occurred approximately four days
after the start of injection, is reflected in the plot of
extracted water temperature in Fig. 5.

Injection pressure was limited to 0.5 psi/ft of
overburden to eliminate the possibility of fracturing the
ground to the surface and venting steam.13 The injection
interval was from 135 to 155 ft at the Clean Site, which
dictated an injection pressure of less than 78 psi. A conser-
vative injection pressure of 50 psi was selected for the first
four days of operation. During the test the pressure was
gradually increased from 50 to 70 psi. During the last three
days of injection, the boiler began to cycle off and on as the
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Figure 2. Temperature-Tomography well.
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Figure 4. Steam injection well.




demand for steam diminished (see Fig. 5). This cycling
suggests steam saturation of the permeable zones near the
injection well.
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Figure 5. Clean Site steam injection operational statistics.
A)Steam injected as water and extracted water volume.
B)Total volume of steamed subsurface. C) Extracted
ground water temperature.
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Note the use of sand as an electrode packing material for
the six wells in the test.

ELECTRODE WATER SUPPLY PORT
PRESSURE GAGE

6= @ PVC [NSULATOR

BENTONITE LAYER
I.5‘°¢ BLACK PIPE -
TG 10" DEPTH

UMM

SANMNNNNONY

VAN

AR

AN NN

BENTONITE

7%
ArET7 o

177 E7E (TP AR FTI A L7 7 AN

#3 SAND STEMMING HW-SNL-51)

UNION CARBIDE ANODE GRAPHITE ORADE
GP-BB-6PIl STEMMING {HW-SNL -52)

STEEL SHOT STEMMING HW-SNL -55)
1.5~ @ SST SCREENED

WELDED JOINT

Y FrOM 10-“T0 BOTTOM OF HOLE
16" §IE 0.020" SLOTS 5% OPEN SPACE
I§:§ 6X THERUOCOUPLE
3
15° I X

GRAVEL STEMMING
INSIOE SST PIPE

7%

207

BENTONITE

Figure 7. Typical electrical heating well design for Tests 2
and 3. Electrode packing material consisted of sand, steel
shot, or anode graphite.

SMALL-SCALE PATTERN WELL CONSTRUCTION

We drilled seven electrical heating holes and 10
temperature holes in the small-scale electrical heating
pattern. The holes were a maximum of 20 ft deep with a
diameter of 4 to 8 in; the heating wells were equally spaced
on a 20-ft-diam circle. Figures 6 and 7 display typical
completion drawings for the small-scale wells.

SMALL-SCALE ELECTRICAL HEATING:
OPERATIONS AND RESULTS

Three small-scale electrical heating tests were con-
ducted to evaluate the effects of moisture content and
completion materials around each electrode, as well as
electrode power density. We found that conductance into
the formation was greatly affected by moisture content
around the electrodes. Amperage levels were high when
the soil was moist and gradually dropped as the area around
the electrode heated and dried. We were able to control the
amperage levels somewhat by selectively wetting elec-
trodes with lower current values. However, we achieved
better control by regulating generator output voltage.

The first heating experiment (Test 1) was conducted
with a three-phase, 72-kW generator operated at 480 V.
The test was conducted for 15 days (11 days running 24 h/d
and 4 days running 12 h/d). Sand completion material was
used around all of the electrodes.



During the two-week test, the temperature in the
center of the 20-ft-diam pattern increased from 19°C to
38°C (1.6°C/d) during the 24-h/d heating, to 44°C during

day-only heating, and finally to 54°C at the end of 25 days.

Figure 8 shows a plot of the temperature change at the
center of the pattern. During Test 1, the electrode packing
material had to be wet continuously from water reservoirs
at the surface to maintain conductivity. The average
current per phase was 73 A during 24-h/d heating.
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Figure 8. Temperature change at the center of the small-
scale electrical heating pattern for the three electrical
heating tests.

The second small-scale test was operated at 240 V.
Test 2 ran 12 h/d for 44 days. The electrode configuration
was changed from the individual electrode design used in
Test 1 (Fig. 6) to continuous mild steel casings from the
surface to the injection point (Fig. 7). Steel shot or anode
graphite replaced the sand completion material around four
of the electrodes. Amperage levels for the electrodes in the
steel shot and graphite wells remained consistently higher
than in wells completed with sand. The average current per
phase varied from 44 A, for phases with electrodes packed
in sand, to 60 A for phases with electrodes packed only in
steel shot or graphite. To maintain conductivity into the
formation, electrodes packed with graphite or steel shot
required minimal wetting, at most only once per day.

During Test 2, the temperature at the center of the
pattern increased from 40°C to 54°C; the rate of
temperature change was 0.54°C/d. The lower heating rate
of this test (compared with Test 1) reflects the applied
voltage of 240 V versus 480 V and heating for 12 h/d
instead
of 24 h/d.

Test 3 used a three-phase, 100-kW generator with an
applied voltage of 480 V. The electrode design and well
completion materials were the same as in Test 2; however
only three of the six wells were used. The test was con-
ducted for 12 h/d for five days. The temperature at the
center of the pattern increased a total of 12°C; the average
daily heating rate was 1.25°C. The average current per
phase during Test 3 varied from 135 A for phases with

electrodes packed in sand to 139 A for phases with elec-
trodes packed only in steel shot or graphite.

We found that generally electrodes packed in steel
shot or graphite maintained higher amperage levels with
less frequent wetting requirements than electrodes packed
in sand. From an operating standpoint, Tests 2 and 3
required much less maintenance and monitoring.

SITE SAFETY

Personnel safety was a primary factor during the
construction and operation phases of the engineering
demonstration. LLNL Operational Safety Procedures
(OSPs) included hazards analysis, personnel training, and
protective clothing requirements, and operation controls
applicable to each activity. We established procedures for
steam injection, electrical heating, and piezometer well
measurements. Calculations supporting the hazards
analysis were documented in LLNL Safety Notes.

One additional OSP, written after the engineering
demonstration began, established maintenance procedures
on wells or downhole equipment (e.g., pumps), where
underground steam is present. Experience at the Clean Site
has shown that when the wells are opened, they can dis-
charge hot water and steam through the wellhead, creating
a geyser. We eliminated this geyser by quenching the well
with cold water from the surface.

REGULATORY REQUIREMENTS

We encountered a number of regulatory issues
throughout the engineering demonstration. Some of the
agencies involved included the San Francisco Bay Area Air
Quality Management District BAAQMD), the Regional
Water Quality Control Board (RWQCB), the U.S.
Occupational Safety and Health Administration (OSHA),
the U.S. Environmental Protection Agency (EPA), and city
and county agencies. Specific issues included:

» Requirements of the Bay Area Air Quality
Management District for boiler and electrical
generator emissions. Because of strict air quality
regulations in the Bay Area, sources that discharge
more than 5 1b/d of NOx emissions are required to
use best available control technology (BACT) such
as flue gas recirculation and low NOx burners.

+ Requirements of the Regional Water Quality
Control Board for the construction and use of
injection and monitoring wells. Wells drilled in the
public right-of-way were also subject to approval
from city and county agencies.

= Approval from local water treatment facilities to
dispose of boiler blowdown and brine solutions into
the sanitary sewer.

* Requirements of state and federal agencies, such as
OSHA and the EPA, for storage of hazardous waste
resulting from well construction and extracted
effluent.



LESSONS LEARNED

The engineering demonstration led to the following
changes:

An improved operational strategy. Our original
plan called for steam injection followed by electri-
cal heating. We assumed that the resistivity contrast
between the permeable and impermeable layers
would be greater after steam injection. In fact, the
opposite was true. Because of the rise in tempera-
ture in the permeable layers, the contrast in
Tesistivities actually became smaller, resulting in
inefficient dissipation of electrical energy into both
zones. On the basis of these results, electrical
heating will be conducted first at the gasoline-
contaminated site at LLNL.

Larger-diameter casing to accommodate the defor-
mation caused by higher subsurface temperatures.
Some of the 1.5-in fiberglass casings were
deformed to a slightly oblate cross section,
preventing passage of logging tools. A nominal

2-in-diam casing will be used at the gasoline-
contaminated site to eliminate this problem. We
successfully used fiberglass casings in the wells
despite subsurface temperatures slightly in excess of
the fiberglass temperature rating.

Using threaded adaptors bonded to the ends of
fiberglass pipes. At the Clean Site, we bonded
fiberglass casings together over the hole as they
were installed. Each bonded joint required
approximately 30 min of cure time before going
downhole. Using threaded adaptors provides two
advantages: a more controlled bonding process
because it can be completed long before installation
and a significant reduction in dnll-rig time required
to install the casing.

Quenching the extraction well solved the geyser
problem. Extraction well pump maintenance during
steam injection posed a personnel safety problem.
With the wellhead open, the well acted like a
geyser, creating hazardous working conditions.
Injecting cold water into the well from the surface
quenched the well and made it possible to work
safely around the wellhead. A new OSP was
developed for use at the Gas Pad.

A more robust, damage-tolerant electrode design
was developed and tested in Electrical Heating
Tests 2 and 3. The new design, which uses steel
casings as the electrical connection from the elec-
trode to the surface, will be implemented at the
LLNL gasoline-contaminated site.

Using alternate electrode stemming materials such
as steel shot or graphite increased conductance into
the formation.

More flexible voltage control will be used at LLNL
to accommodate variations in electrode conductance
caused by the moisture content of the surrounding
soil.
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